
October Math Gems

Problem of the week 12

§1 Problems

Problem 1.1. If a, b are real numbers such that a ≥ b, prove that(√
b(
√
a+

√
b)

8b

)2

≥ 1

16
.

Solution. We have to prove that(√
b(
√
a+

√
b)

8b

)2

≥ 1

4
.

First, observe that(√
b(
√
a+

√
b)

8b

)2

= b

(√
a

8b
+

√
b

8b

)2

= b(
a

64b2
+

b

64b2
+

2
√
ab

64b2
)

Since a ≥ b, we have that

b(
a

64b2
+

b

64b2
+

2
√
ab

64b2
) ≥ b

64b
+

b

64b
+

2
√
b2

64b
=

4

64
=

1

16

Problem 1.2. We have 6 balls of different colours, including blue and red. In how
many ways can we arrange them in a row so that the blue ball and red ball do not come
together.

Solution. Imagine that we first place the other 4 balls, then choose places for the red
and blue balls. Hence, the number of ways to arrange 4 balls is 4P4 = 4!/0! = 24 ways.
Now, putting these two balls in two different places among the 5 places available (3

between the balls, 2 at the edges) satisfies the condition of separating them. Hence, the
number of ways of separating them = 5P3 = 5!/3! = 20 ways.
Hence, the total number of ways = 20 · 24 = 480 ways.

Problem 1.3. ABCDEF is a regular hexagon. Given that M is the midpoint of EF and
BQ is perpendicular to DM at H. Find the ratio DH

HM .
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Solution. Assume ABCDEF is a unit regular hexagon. Hence, using cosine law for triangle
DCB, with DC = CB = 1 and m(∠BCD) = 2π/3, we get DB =

√
3. Using it for

triangle BFM with BF =
√
3,MF = 1/2 and m(∠MFB) = π/2, we get MB =

√
13/2.

Using it for triangle DEM with DE = 1,ME = 1/2 and m(∠DEM) = 2π/3, we get
DM =

√
7/2. Since triangles BDH,BMH are right, we apply Pythagoras’ theorem to

obtain {
3− (DH)2 = (BH)2

13/4− (
√
7/2−DH)2 = (BH)2

Solving for DH, we get DH = 3
√
7

14 . Hence, HM =
√
7
2 − 3

√
7

14 = 4
√
7

14 .
Thus, DH

HM = 3
4

Problem 1.4. Find all pairs of integers (a, b) such that

a2 + b = 2023.

Solution. The given condition is equivalent to a2 = b(b2022 − 1). If b ≥ 2, then b and
b2022 − 1 are both positive and relatively prime, hence both perfect squares. However,
since b2022 is also a perfect square, we get a contradiction. Hence, b ≤ 1. Moreover,
b ≤ −2 is impossible because it implies that a2 < 0. Hence, the possible values for b are
-1,0,1. All of which give a = 0 as the only valid solution.
Hence, the pairs are (0,−1), (0, 0), (0, 1).

Problem 1.5. Equal letters stand for equal numbers, different letters for different
numbers.

4 ·ABCDE = EDCBA.

Determine ABCDE.

Solution. Since EDCBA is a 5-digit number, we know that ABCDE < 1/4 · 100, 000 =
25000. Thus, A = 1 or 2. But since EDCBA is a multiple of 4, it is even. Thus, A = 2.
Moreover, 4 · XXXXE = XXXX2. Hence, E = 3 or 8. However, 2XXXX · 4 ̸=
3XXXX. Thus, E = 8.
We have 2BCD8 · 4 = 8DCB2. Hence, 4 ·BCD + 3 = DCB. We have that B < 2 since
it can not equal 2 and there would be a carry for values greater than 2. Hence, B = 1.
Trying different cases for C and D, we get that ABCDE = 21978
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Problem 1.6. Find all integers satisfying the equation

2x · (4− x) = 2x+ 4

Solution. Since 2x must be positive, we have 2x+4
4−x > 0 yielding −2 < x < 4. Thus, it

suffices to check the points -1, 0, 1, 2, 3. The three solutions are x = 0, 1,2.

Problem 1.7. a1a2a3 and a3a2a1 are two three-digit decimal numbers, with a1, a3 being
different non-zero digits. The squares of these numbers are five-digit numbers b1b2b3b4b5
and b5b4b3b2b1 respectively. Find all such three-digit numbers.

Solution. Assume a1 > a3 > 0. As the square of a1a2a3 must be a five-digit number we
have a1 ≤ 3. Now a straightforward case study shows that a1a2a3 can be 301, 311, 201,
211 or 221.

Problem 1.8. Let’s call a positive integer “interesting” if it is a product of two (distinct
or equal) prime numbers. What is the greatest number of consecutive positive integers
all of which are “interesting”?

Solution. The three consecutive numbers 33 = 3(11), 34 = 2(17) and 35 = 5(7) are all
“interesting”. On the other hand, among any four consecutive numbers there is one of
the form 4k which is “interesting” only if k = 1. But then we have either 3 or 5 among
the four numbers, neither of which is “interesting”.

Problem 1.9. Solve the system of equations:
x5 = y + y5

y5 = z + z5

z5 = t+ t5

t5 = x+ x5

Solution. Adding all four equations we get x + y + z + t = 0. On the other hand,
the numbers x, y, z, t are simultaneously positive, negative or equal to zero. Thus,
x = y = z = t = 0 is the only solution.

Problem 1.10. Determine all real numbers a, b, c, d that satisfy the following system of
equations. 

abc+ ab+ bc+ ca+ a+ b+ c = 1

bcd+ bc+ cd+ db+ b+ c+ d = 9

cda+ cd+ da+ ac+ c+ d+ a = 9

dab+ da+ ab+ bd+ d+ a+ b = 9

Solution. Substituting A = a+ 1, B = b+ 1, C = c+ 1, D = d+ 1, we obtain

ABC = 2 (1)

BCD = 10 (2)

CDA = 10 (3)

DAB = 10 (4)

Multiplying (1), (2), (3) gives C3(ABD)2 = 200, which together with (4) implies C3

= 2. Similarly we find A3 = B3 = 2 and D3 = 250. Therefore,the only solution is
a = b = c = 3

√
2− 1 and d = 5 3

√
2− 1
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Problem 1.11. Find all pairs of integers (p, q) such that

(p− q)2 =
4pq

p+ q − 1

Solution. By multiplying both sides of the equation with the denominator of the right
side, we get (p − q)2(p + q − 1) = 4pq, which gives (p + q)2 = (p − q)2(p + q). Hence,
p + q = 0 or p + q = (p − q)2. The first case gives p = −q, i.e. all the pairs (n,−n)
where n is integer, are suitable. In the second case take p− q = n, then p+ q = n2 and
p = n2+n

2 , q = n2−n
2 .

To ensure the denominator of the fraction in the problem is not zero, the condition
p+ q ̸= 1 must be added. Hence, n ̸= 1, n ̸= −1.

Pairs (n,−n),
(
k(k+1)

2 , k(k−1)
2

)
for an arbitrary integer n, excluding (1, 0), (0, 1).

Problem 1.12. Assume that g(x) = x2

1+x2 ). Find the value of the expression

g(
1

2000
) + g(

2

2000
) + · · ·+ g(

1999

2000
) + g(

2000

2000
) + g(

2000

1999
) + · · ·+ g(

2000

1
)

Solution. 1999.5. One obtains the answer using the fact that for any non-zero real
number x,

f(x) + f(
1

x
) =

x2

1 + x2
+

( 1x)
2

1 + ( 1x)
2
=

x2

1 + x2
+

1

x2
· 1

1 + 1
x2

=
x2

1 + x2
+

1

1 + x2
= 1.

Problem 1.13. Let a, b, c and d be non-negative integers. Prove that the numbers 2a7b

and 2c7d give the same remainder when divided by 15 if and only if the numbers 3a5band
3c5d give the same remainder when divided by 16.

Solution. First, we show that if |a′ − a| = |b′ − b| = 2, then 2a7b ≡ 2a
′
7b

′
(mod 15) and

3a5b ≡ 3a
′
5b

′
(mod 16). Indeed, we can assume that a′ = a+ 2. If b′ = b+ 2, we obtain

2a
′
7b

′
= 2a7b · 2272 = 2a7b · (2 · 7)2 ≡ 2a7b · (−1)2 = 2a7b (mod 15).

Moreover,

3a
′
5b

′
= 3a5b · 3252 = 3a5b · (3 · 5)2 ≡ 3a5b · (−1)2 = 3a5b (mod 16).

If b′ = b − 2, we can use the same relations noting that 74 ≡ 1 (mod 15) and 54 ≡ 1
(mod 16). Now we prove that for every pair of non-negative integers (a, b) there exists a
pair (a′, b′) such that 2a7b ≡ 2a

′
7b

′
(mod 15), 3a5b ≡ 3a

′
5b

′
(mod 16), a′ ∈ {0, 1, 2, 3} and

b′ ∈ {0, 1}.
We conclude that both of the exponents can be changed by a number divisible by 4
without changing the remainder of dividing by the required number. Thus, we can
consider only the case where a, b ∈ {0, 1, 2, 3}. If b ≤ 1, take a = a′ and b′ = b; if b > 1,
then b′ = b− 2 and a′ can be chosen from the set {0, 1, 2, 3} so that it differs from the
number a by exactly 2.
It remains to prove that the remainders of the numbers 2a

′
7b

′
when divided by 15 and

the remainders of the numbers 3a
′
5b

′
when divided by 16 are pairwise different if the

numbers a′ and b′. come from the above mentioned sets. This can be seen by a manual
check.
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Problem 1.14. If XY Z is a triangle with Y and Z being acute and different from π
4 ,

and we also have L as the foot of the height from X, then prove that ∠X is right if and
only if

1

XL− Y L
+

1

XL− ZL
=

1

XL

Solution. Let XL = h, Y L = x, ZL = y. The stated equation then becomes h2 = xy
after some manipulation.
If ∠X is right then by the right angle altitude theorem or geometric mean theorem we
have h2 = xy.
On the other hand, suppose that h2 = xy. Clearly, cot∠Y = x

h , cot∠Z = y
h . Hence,

cot(∠Y + ∠Z) =
cot(∠Y ) cot(∠Z)− 1

cot(∠Y ) + cot(∠Z)

implying that ∠Y + ∠Z = π
2 , and hence, ∠X = π

2 .

Problem 1.15. Given x and y as positive real numbers, where

x3

y2
+

y3

x2
= 5
√
5xy.

Show that √
x

y
+

√
y

x
=

√
5.

Solution. Let a =
√

x
yandb = a+ 1

a . Hence, we have that

x3

y2
+

y3

x2
= 5
√
5xy

↔a5 +
1

a5
= 5

√
5

↔
(
a+

1

a

)(
a4 − a2 + 1− 1

a2
+

1

a4

)
= 5

√
5

↔b(b4 − 5b2 + 5) = 5
√
5

↔ (b−
√
5)(b4 +

√
5b+ 5)

Since b4 +
√
5b+ 5 > 0, b =

√
5 and the rest follows.

Problem 1.16. There are 20 cats priced from $12 to $15 and 20 sacks priced from 10
cents to $1 for sale (all prices are different). Prove that each of two boys, John and Peter,
can buy a cat in a sack by paying the same amount. of money.

Solution. The number of different possibilities for buying a cat and a sack is 20 · 20 =
400 while the number of different possible prices is 1600 - 1210 + 1 = 391. Thus by the
pigeonhole principle there exist two combinations of a cat and a sack costing the same
amount of money. Note that the two cats (and also the two sacks) involved must be
different as otherwise, the two sacks (respectively, cats) would have equal prices.

Problem 1.17. Let p and q be two consecutive odd prime numbers. Prove that p + q
is a product of at least two positive integers greater than 1 (not necessarily different).
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Solution. Since q − p = 2k is even, we have p+ q = 2(p+ k). It is clear that p < p+ k <
p+ 2k = q. Therefore, p+ k is not prime and, consequently, is a product of two positive
integers greater than 1.

Problem 1.18. There is a finite number of towns in a country. They are connected by
one direction roads. It is known that, for any two towns, one of them can be reached
from the other one. Prove that there is a town such that all the remaining towns can be
reached from it.

Solution. Consider a town A from which a maximal number of towns can be reached.
Suppose there is a town B that cannot be reached from A. Then A can be reached from
B and so one can reach more towns from B than from A, a contradiction.

Problem 1.19. Find all triples (x, y, z) of positive integers satisfying the system of
equations: {

x2 = 2(y + z)

x6 = y6 + z6 + 31(y2 + z2)

Solution. From the first equation, it follows that x is even. The second equation implies
x > y and x > z. Hence 4x > 2(y + z) = x2, and therefore x = 2 and y + z = 2,
so y = z = 1. It is easy to check that the triple (2, 1, 1) satisfies the given system of
equations.

Problem 1.20. In the figure below, you see three half-circles. The circle C is tangent to
two of the half-circles and to the line PQ perpendicular to the diameter AB. The area
of the shaded region is 39π, and the area of the circle C is 9π. Find the length of the
diameter AB.

Solution. Let r and s be the radii of the half-circles with diameters AP and BP. Then we
have

39π =
π

2
((r + s)2 − r2 − s2)− 9π.

Hence, rs = 48. Let M be the midpoint of the diameter AB,N be the midpoint of
PB,O be the centre of the circle C, and let F be the orthogonal projection of O on AB.
Since the radius of C is 3, we have |MO| = r + s− 3, |MF | = r − s+ 3, |ON | = s+ 3,
and |FN | = s− 3. Applying the Pythagorean theorem to the triangles MFO and NFO
yields

(r + s− 3)2 − (r − s+ 3)2 = |OF |2 = (s+ 3)2 − (s− 3)2

, which implies r(s−3) = 3s, so that 3(r+s) = rs = 48. Hence, |AB| = 2(r+s) = 32
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